PID-Regelung für Dummies: Alles, was Sie wissen müssen

Pid-Regelung für Dummies ist für diejenigen gedacht, die ein besseres Verständnis der PID-Regelung anstreben, ohne in komplexen technischen Konzepten zu ertrinken.


Ob Sie ein Techniker oder ein Student im Bereich der Instrumentierung sind, dieser Artikel soll eine Ressource sein, die Sie auf dem Weg zum Wissen über den Pid-Regler führt.

Sie erfahren etwas über die Entstehung der Regelung, die Funktionsweise von PID, die Bedeutung der PID-Regelung in verschiedenen Industriezweigen und erhalten Tipps zur Optimierung Ihres Prozesses.

pid-Regulierung für Dummies alles, was Sie wissen müssen

Schlüsselpunkte

  1. Der PID-Regler ist in einer Vielzahl von Branchen und Anwendungen ein integraler Bestandteil des Regelsystems.
  2. Das Hauptziel eines PID-Reglers ist der Vergleich zwischen einem Sollwert und der Messung während des Prozesses, um den Fehler zu minimieren.
  3. Die richtigen Einstellungen Ihrer PID-Temperaturregler können die Leistung Ihres Prozesses stark beeinflussen.
  4. Eine Erklärung der Begriffe PID, On/Off, Proportionalband, Ableitung, Integral, Schleife, Sollwert und vieler anderer verwandter Konzepte zu erhalten, wird Ihnen helfen, die Leistungsfähigkeit Ihres PID-Systems voll auszuschöpfen.
stabilität und leistung ihres systems

Ihr Leitfaden PID-Regelung für Dummies PDF kostenlos


geschichte des pid-regulators

Geschichte des PID-Reglers

Es ist schwierig, die PID-Regelung zu diskutieren, ohne ihre Geschichte zu berühren. Jahrhunderts beobachtete Nicolas Minorsky, dass Schiffe trotz der ständigen Bemühungen des Lotsenpersonals keinen konstanten Kurs einhalten konnten.

Herr Minorsky entwickelte daraufhin eine Lösung für den Bedarf: die Verwendung eines automatischen Reglers, der durch die Auswertung der Abweichungen zwischen der gewünschten und der tatsächlichen Richtung das Ruder anpassen konnte, um eine reibungslosere Navigation zu gewährleisten.

Dies war die Grundlage für die Entstehung der PID-Regelung, und ihr Effekt auf die Steuerung von Industrieprozessen war groß.

geburt der pid-de-regulation

regelkreis für töpfereiofen fr

Das Funktionsprinzip

Um die Funktionsweise eines PID-Reglers leicht zu verstehen, betrachten wir ein einfaches und gängiges Beispiel für einen Regelkreis - einen Töpferofen.

Die Temperatur im Ofen muss auf einem konstanten Sollwert gehalten werden, sagen wir ein Sollwert von 800 °C.

einfache Grundregelung de

Anstelle einer einfachen Ein-Aus-Regelung (der Ofen ist entweder ein- oder ausgeschaltet) wird der PID-Temperaturregler diese Temperatur konstant halten, um eine Abweichung zu vermeiden, die die Qualität des Produkts im Ofen verschlechtern könnte.

System mit offenem Regelkreis

So funktioniert es.

Der Beginn des Regelvorgangs beinhaltet einen Thermoelement-Temperaturfühler der die Temperatur im Inneren des Ofens überwacht.

äquivalentes Funktionsschema
Antwort des Systems in geschlossener oder offener Schleife de

Diese Temperaturmessung wird mit dem Temperatursollwert (800 °C in diesem Beispiel) verglichen.

geschlossenes System de

DieAbweichung zwischen diesen beiden Werten, die als Fehler bezeichnet wird, wird an den PID-Regler gesendet, der eine Korrekturmaßnahme am Ausgang formuliert, um diesen Fehler abzuschwächen.

quality a good regulation fr

Diese Korrektur ist das Produkt aus drei Funktionen oder Größen: Die Begriffe Proportional (P), Integral (I ) und Ableitung (D) bilden zusammen das Akronym PID (Proportional Integral Ableitung).

proportional integral derived de
proportional p

Proportional (P)

Die Proportionalbandaktion ist gleichbedeutend mit der Multiplikation des Fehlers mit einem Proportionalkoeffizienten (Kp). Diese Aktion bewirkt, dass der Ausgang des Reglers so angepasst wird, dass er proportional zum Fehler ist. Wenn also der Fehler oder die Störung groß ist, wird auch die Korrektur groß sein und umgekehrt.

integral i

Integral (I)

Die integrale Aktion zielt darauf ab, den persistenten Fehler zu beseitigen, indem vergangene Fehler akkumuliert und zeitlich integriert werden. Diese Aktion bringt das System schrittweise näher an den Sollwert heran, indem die Ausgabe entsprechend dem integrierten Fehler angepasst wird. Der Einfluss dieser Komponente wird durch den Integralkoeffizienten (Ki) bestimmt.

derivee d

Derivat (D)

Die abgeleitete Aktion bezieht sich auf die Änderungsrate des Fehlers. Diese prädiktive Aktion ermöglicht es dem System, auf der Grundlage der beobachteten Trends auf zukünftige Ereignisse zu reagieren. Der abgeleitete Koeffizient (Kd) passt den Einfluss dieser Aktion an, um eine bessere Kontrolle zu ermöglichen.


Pid-Regler einstellen

Einstellen eines PID-Reglers

Die Einstellung eines Proportional-Integral-Derivativ-Reglers mag abschreckend wirken, ist aber für den reibungslosen Ablauf Ihres Prozesses von entscheidender Bedeutung. Jeder der Einstellparameter P, I und D wirkt sich darauf aus, wie der Regler auf Änderungen der Prozesswerte reagiert.

Mit den richtigen Einstellungen können Sie die Stabilität und Leistung Ihres Systems deutlich verbessern.

Schlecht ausgeführte Einstellungen können jedoch im Gegenteil zu Oszillationen, Übererregungen und Unterreaktionen führen, wodurch sich die Qualität der Prozesssteuerung verschlechtert.

passende Einstellungen pid regler pxf de
ziecler nichols methode de

Ziegler-Nichols-Methode

Die Ziegler-Nichols-Methode ist ein bekannter Ansatz, um die Parameter eines PID-Reglers einzustellen.

Bei dieser Methode wird das System oder der Prozess zum Schwingen gebracht, indem die Proportionalverstärkung (Kp) so lange angepasst wird, bis sie die Stabilitätsgrenze erreicht hat.

Die Oszillationsperiode und die kritische Verstärkung werden dann verwendet, um die optimalen Proportional- (Kp), Integral- (Ki) und Ableitungskoeffizienten (Kd) zu bestimmen.

Obwohl diese Methode für eine erste Anpassung der PID-Parameter praktisch ist, ist es wichtig zu beachten, dass die Optimierung des Regelsystems möglicherweise weitere Anpassungen erfordert. Diese Anpassungen hängen von der gewünschten Reaktion und den spezifischen Einschränkungen des Prozesses ab.


grenzen der pid-de-regulation

Grenzen der PID-Regelung

Wenn Ihr System eine inhärente Instabilität aufweist oderandere Probleme wie Verzögerungen, Störungen, externer Druck usw. vorherrschen, dann kann ein P-, I-, D-Regler diese Probleme nur mildern, nicht aber vollständig beseitigen. Manchmal ist es sinnvoll, das Prozessdesign zu überdenken.

grenzen der pid-regulation zwei version de

FAQs zur PID-Regelung

Was ist ein geschlossener Regelkreis bei der PID-Regelung?

In einer geschlossenen Schleife werden ständig Informationen über den aktuellen Zustand des Prozesses an den PID-Regler zurückgegeben.

Er nutzt diese Informationen, um eine Korrektur an seinem Ausgang vorzunehmen und so den Prozess so nah wie möglich am Sollwert zu halten.

Dieser Mechanismus verbessert die Genauigkeit bei der Verwaltung von Prozessvariablen erheblich und ermöglicht so eine strengere Regulierung und eine höhere Stabilität.

Darüber hinaus tragen Systeme mit geschlossenem Regelkreis effektiv dazu bei, externen Störungen entgegenzuwirken und unerwünschte Schwankungen zu minimieren.

Was bedeutet der Begriff alles oder nichts in der Regulierung?

Alles oder Nichts bezeichnet einen Steuerungsmodus, in dem das System entweder zu 100 % eingeschaltet oder vollständig ausgeschaltet ist. Es gibt keine Betriebsstufen dazwischen.

Was sind die Nachteile der On/Off-Regelung im Vergleich zur PID-Regelung?

  1. Mangelnde Genauigkeit: Im Gegensatz zur PID-Regelung, bei der die Leistung fein abgestimmt wird, um die gewünschte Temperatur zu erreichen und zu halten, arbeitet die Ein/Aus-Regelung nur mit Extremzuständen (zu 100 % eingeschaltet oder ausgeschaltet). Diese Methode neigt dazu, eine Überschreitung des Temperaturziels zu erzeugen, bevor sie sich stabilisiert, was eher zu Schwankungen führt als zu der Stabilität, die mit einer PID-Regelung erreicht wird.
  2. Temperaturschwankungen: Die Betriebsart Ein/Aus führt zu stärkeren Schwankungen der Temperatur um den Sollwert. Diese Schwankung kann bei Prozessen, die eine feine und konstante Temperaturregelung erfordern, schädlich sein.
  3. Abnutzung der Geräte : Das häufige Ein- und Ausschalten von Geräten bei einer Ein/Aus-Regelung belastet die mechanischen und elektrischen Komponenten stärker und verkürzt potenziell ihre Lebensdauer im Vergleich zu einem sanfteren Betrieb, der durch eine PID-Regelung ermöglicht wird.
  4. Energieverbrauch: Obwohl die Ein/Aus-Regelung aufgrund von Inaktivitätsperioden energiesparender erscheinen mag, können häufige Ein-/Ausschaltzyklen tatsächlich langfristig zu einem höheren Energieverbrauch führen, insbesondere in Fällen, in denen das System beim Start viel Energie verbraucht. Die PID-Regelung tendiert durch ihre Feinabstimmung zu einem optimierten Energieverbrauch.
  5. Reaktion auf Störungen: Die On/Off-Regelung kann bei plötzlichen Prozessstörungen (z. B. Öffnen einer Tür in einem klimatisierten Raum) weniger effektiv sein, da sie nur mit Ein- oder Ausschalten reagieren kann, während die PID-Regelung die zugeführte Energie proportional anpassen kann, um der Störung schnell entgegenzuwirken.

 

Alles in allem kann die On/Off-Regelung für einfache und weniger anspruchsvolle Anwendungen geeignet sein. Für eine präzise und effiziente Temperatursteuerung, insbesondere in industriellen Umgebungen oder bei kritischen Prozessen, bietet die PID-Regelung jedoch erhebliche Vorteile in Bezug auf Stabilität, Energieeffizienz und Schutz der Ausrüstung.

Was ist das Proportionalband bei der PID-Regelung?

Das Proportionalband ist der Wertebereich, innerhalb dessen der Regler bei einer Proportionalregelung von seinem ausgeschalteten Zustand in seinen vollen Zustand übergeht (und umgekehrt). Sie ist der Teil der PID-Regelung, der auf die Abweichung zwischen dem Wert, den man erreichen möchte, und dem aktuellen Wert reagiert. Je größer diese Abweichung ist, desto größer ist die vorgenommene Korrektur.

Was ist das Integralband bei der PID-Regelung?

Das Integralband ist der Teil der PID-Regelung, der sich im Laufe der Zeit aufbaut. Wenn die Abweichung bestehen bleibt, auch wenn sie noch so klein ist, wird diese Korrektur immer weiter ansteigen, bis die Abweichung korrigiert ist.

Was ist die Ableitung bei der PID-Regelung?

Dieabgeleitete Aktion in der PID-Regelung ist der Teil, der auf die Änderungsgeschwindigkeit der Abweichung reagiert. Sie versucht, die Zukunft dieser Abweichung vorherzusagen und eine vorbeugende Korrektur vorzunehmen, um zu schnelle Änderungen zu minimieren.

Wo können PID-Regler eingesetzt werden?

PID-Regler werden in verschiedenen Branchen wie derPharmaindustrie, der Lebensmittelindustrie (z. B. Bäckereiöfen oder Pizzaöfen), der Automobilindustrie (z. B. Lackierkabinen) in Labors (z. B. Materialprüfung im Automobilbereich), in Spezialmaschinen wie Verpackungsmaschinen oder in der Kunststoffverarbeitung weit verbreitet eingesetzt, u. a. für :

 

  • Die Temperaturregelung
  • Die Kontrolle des Durchflusses und der Geschwindigkeit von Flüssigkeiten
  • Die Levelüberwachung
  • Die Druckregulierung

Und viele weitere Anwendungen und Systeme zur Temperaturregelung

falsch durchgeführte Einstellungen

lassen Sie sich nicht von der Komplexität der Pid-Regulierung aufhalten

Lassen Sie sich nicht von der Komplexität der PID-Regelung aufhalten!

Bei Fuji Electric stehen unsere Experten für industrielle Temperaturregelung bereit, um Sie bei der Auswahl der idealen PID-Regler für Ihr System zu unterstützen. Wir unterstützen Sie bei der Inbetriebnahme der Regler, um die Parametereinstellungen zu verfeinern.

Egal, ob Sie ein erfahrener Profi oder ein Neuling auf diesem Gebiet sind, unser Team steht Ihnen zur Seite, um die PID-Regelung in einen beherrschbaren und leistungsfähigen Trumpf für Ihr Geschäft zu verwandeln.