

COMPACT NDIR GAS ANALYZER

DATA SHEET ZSVF-3

OVERVIEW

The compact NDIR gas analyzer (ZSVF) consists of an analyzing block (infrared sensor and oxygen sensor) and a sampling block.

For gas extractor, either simplified measurement (non-fixed type) or continuous measurement (fixed type) probe is selectable at option.

Because a single beam type high-sensitivity mass flow sensor is adopted for the infrared sensor, long-term stability and maintainability are excellent.

This analyzer is capable of simultaneously measuring max. 5 components among NOx, SO₂, CO₂, CO, CH₄ and O₂ in sample gas, and is used for flue gas from stationary emission sources such as various boilers, garbage incinerators and heat treatment furnaces, and for plant cultivation and research-purpose chemical analysis.

 Gas concentrations of 5 components measurable simultaneously and continuously (Note).

Concentrations of max. 4 gas components among NOx, SO_2 , CO_2 , CO and CH_4 are continuously measurable with the infrared sensor, and that of O_2 is continuously measurable with a magnetic force or galvanic cell type oxygen sensor in combination with a full-fledged sampling block.

2. Standard with 3-range analyzer

Measurement can be performed over a broad range using the range selector key.

3. Compact and easy to use.

The analyzing block and sampling block are separated from each other to facilitate transport and installation. Operation is easier because operation keys and display unit are all gathered in the analyzing block.

4. A rich variety of standard functions incorporated.

Auto zero calibration and auto drain discharge function are incorporated for ensuring an excellent maintainability. Max. 8-channel outputs are allowed including instantaneous concentration value, O₂-corrected value, O₂-corrected moving average value and CP calculation value outputs.

(Note) To perform measurement continuously, the standard requirements for sample gas (shown on page 3) need to be met, and periodic draining, zero/span calibrations and membrane filter replacement are required.

SPECIFICATIONS

Standard Specifications

• Measuring system:

 NO_x , SO_2 , CO_2 , CO and CH_4 ; Non-dispersive infrared absorption method with single light source and single beam (single beam method)

O2; Magnetic force or galvanic cell method

• Measurable component and min./max. measuring range:

NOx: 0 to 500 ppm / 0 to 5000 ppm

SO₂; 0 to 500 ppm / 0 to 1 %

 $CO_2;\ 0$ to 200 ppm / 0 to 100 %

CO; 0 to 200 ppm / 0 to 100 %

CH₄; 0 to 1000 ppm / 0 to 100 %

O2; 0 to 5 % / 0 to 25 %

Max. 5 components measurable including O₂

Number of measuring ranges:

3 ranges

• Max. range ratio 1:5

• Warm-up time:

30 min after power-on

Provided with count-down timer indicating function.

Analog output:

In up to 8 channels.

4 to 20 mA DC or 0 to 1 V DC (linear)

Non-isolated output

Allowable load; 4 to 20 mA DC, 550Ω or less 0 to 1 V DC, $100 \text{ k}\Omega$ or more

- Instantaneous value output of each gas component
- Instantaneous value output after O₂ correction (when provided with O₂ analyzer)

This product is not explosion-proof. When handling dangerous gas, adequate attention shall be paid.

- Average value output after O_2 correction (when provided with O_2 analyzer)
- CP calculation value output (when provided with CO₂ analyzer)
- * The channel numbers of indicated value and output value correspond to each other one by one.
- * An exclusive 25-pin cable is standard-equipped.

Communication output:

RS-232C Modbus protocol

* Use a commercially available product (D-sub 9-pin cable).

• Control input/output:

Input/output signals between the analyzing block and sampling block.

* An exclusive 15-pin cable is standard-equipped.

• Indicated values:

Digital 4-digit indication (by LCD with back light)

- · Instantaneous values of respective gas components
- Instantaneous values after O₂ correction (when provided with O₂ analyzer)
- Average value after O₂ correction (when provided with O₂ analyzer)
- CP calculation value display (when provided with CO₂ analyzer)
- * The channel numbers of indicated value and output value correspond to each other one by one.

· Power supply:

Rated voltage; 100 to 115 V AC or 200 to 240 V AC Working voltage; 85 to 132 V AC or 180 to 264 V AC

* Depending on customer's code selection.

Rated frequency; 50/60 Hz

Max. rated power; 150 VA for analyzing block 250 VA for sampling block

Inlet; Class 1 type conforming with EN60320

· Operating conditions:

Ambient temperature; 0 to 40°C Ambient humidity; 90% RH or less

* Condensation unallowable

• Storage conditions:

Ambient temperature; -20 to 60°C

Ambient humidity; 95% RH or less

* Condensation unallowable.

Water should be drained from the drain pot and zero pot.

• External dimensions (H × W × D mm):

Analyzing block; 211 × 365 × 514 Sampling block; 377 × 365 × 514

Weight:

Analyzing block; Approx. 12 kg Sampling block; Approx. 18 kg

• Finish color:

Cover; White pearl mica Base; Medium gray metallic

• Enclosure design:

Casing made of steel plates for indoor installation.

· Gas-contacting part materials:

Gas inlet/outlet; Polypropylene

Sample cell; SUS304/neoprene rubber

Transparent window: CaF2

Internal pipes: Toalon tube/Teflon tube Connection nipple: Polypropylene/Teflon

· Gas inlet/outlet:

ø6/ø3 hose end

• Purge gas flow rate:

1 L/min (to be purged as required)

Standard Functions

• Auto zero calibration:

Zero point is calibrated periodically at the predetermined cycle.

* For using N2 gas, prepare zero cylinder gas.

Calibration cycle; OFF/ON (1 to 12 hours)

(settable in 1-hour step)

Gas flow time; 180 to 999 sec (settable in 1-sec step)

• Auto draining:

Water is drained periodically at the predetermined cycle. Draining cycle; 1 to 8 hours (settable in 1-hour step) Draining time; 30 to 60 sec (settable in 1-sec step)

Auto indication off:

Indication automatically turns off when no key is operated for the determined period of time in the standby status. Light off time; OFF/ON (1 to 30 min) (settable in 1-min step)

• Replacement/purge time:

After zero/span calibration or measurement, zero gas or sample gas is automatically flowed.

Gas flow time; 30 to 300 sec (settable in 1-sec step)

• Output holding:

At calibration during measurement, output holds the value just before the calibration according to hold setting. In the standby status, output will not be held.

Indication will not be held either.

Hold setting; OFF/ON

• Key lock:

None of the set values can be changed when key lock is turned ON.

This is helpful for reducing operation errors and wrong inputs.

• Instrument/calibration error indication:

When the instrument or calibration is abnormal, an error number is indicated to help analysis of the error.

• O₂ correction:

Conversion of measured NOx, SO_2 and CO gas concentrations into values at standard O_2 concentration Calculating equation;

$$C = \frac{21 - On}{21 - Os} \times Cs$$

C; Sample gas concentration after O₂ correction

Cs; Measured concentration of sample gas

Os; Measured O₂ concentration

On; Standard O_2 concentration for conversion (settable within 0 to 19%)

The result of conversion is indicated and output in a signal simultaneously.

* An Os value of 20% or more is taken as 20% for calculation.

• Averaging after O2 correction;

The result of O_2 correction is subjected to moving average for the determined period of time. And the result of averaging is indicated and output in a signal simultaneously. Average value will be taken at a cycle of 30 sec. (Indication and output are updated every 30 sec.)

• Resetting of output average value:

Indication and output of average value are cleared in response to resetting.

* Effective only when average value selection is specified in CODE SYMBOLS.

• CP calculation:

The carbon potential of carburizing furnace and conversion furnace are calculated using furnace temperature (fixed input value) and CO concentration value (fixed or measured value) while referring to CO₂ measured value.

Calculation equation; $CP = \frac{CPS \times (PCO)^2}{K1 \times PCO_2}$

where,

CPS ; Saturated carbon concentration (partial pressure)

 $0.0028t-1.30 (800^{\circ}C \le 850^{\circ}C)$ $0.0030t-1.47 (850^{\circ}C \le 950^{\circ}C)$ $0.0034t-1.85 (950^{\circ}C \le 1000^{\circ}C)$

t ; Furnace temperature

PCO ; CO concentration value (partial pressure) PCO₂ ; CO₂ concentration value (partial pressure)

K1 ; Constant K1=10 (9.06–15966/T) T ; Rankine temperature (tx9/5+32+460)

Performance

· Repeatability:

Within ±0.5% of full scale

· Linearity:

Within ±2% of full scale

· Zero drift:

Within ±1% of full scale/day

· Span drift:

Within ±1% of full scale/day

· Response time:

Within 50 sec for 90% indication after extracting sample gas through the inlet.

However, within 3 min with SO_2 and galvanic cell type O_2 analyzers

· Other gases' influence:

Interfer-	Sample component/	NOx ar	nalyzer	SO ₂ ar	nalyzer	CH4 analyzer
ence cor nent con	npo- range centration	500ppm max	1000ppm min	500ppm max	1000ppm min	All ranges
NO 1000ppm				Withir	Within ±2%	
SO ₂ 1000ppm		Withir	1 ±2%			Within ±2%
CO ₂	15%	Withir	1 ±2%	Withir	1 ±2%	Within ±5%
СО	1000ppm	Withir	1 ±2%	Withir	1 ±2%	Within ±2%
CH4	1000ppm	Withir	1 ±2%	Within ±8%	Within ±5%	_
NH ₃ 50ppm		Within ±8%	Within ±5%	Within ±8%	Within ±5%	Within ±2%
H ₂ O 2	°C saturatio	Within ±3%	Within ±2%	Within ±3%	Within ±2%	Within ±2%

^{*} H₂O interference values in 2C saturation with NOx and SO₂ analyzers are values after moisture interference compensation.

Interfer-			nalyzer	CO ar	alyzer	O2 analyzer
ence con nent con	npo- range centration	200ppm max	500ppm min	200ppm max	500ppm min	All ranges
NO 1000ppm		Withir	1 ±2%	Withir	Within ±2%	
SO ₂	1000ppm	Withir	1 ±2%	Withir	1 ±2%	Within ±2%
CO ₂	15%	-	_	Within ±3%	Within ±3%	Within ±2%
СО	1000ppm	Withir	1 ±2%	_	_	Within ±2%
CH4	1000ppm	Withir	1 ±2%	Withir	Within ±2%	
NH ₃ 50ppm		Withir	1 ±2%	Withir	1 ±2%	Within ±2%
H ₂ O 2°C saturatio		Within ±3%	Within ±2%	Within ±3%	Within ±2%	Within ±2%

Standard Requirements for Sample Gas

• Flow rate:

0.5 L/min ±0.2 L/min for 1 optical system (1 L/min ±0.4 L/min for 2 optical systems)

Temperature:

0 to 40°C at inlet of sampling block

10 to 70°C at tip of non-fixed type probe (available at option)

70 to 400°C at tip of fixed type probe (available at option)

• Pressure:

0 to 3 kPa (Gas shall be discharged into atmospheric air.)

• Dust:

50 mg/Nm³ or less

• Mist:

Unallowable

· Corrosive gas:

HCI 10 ppm or less Others Unallowable

· Standard gas for calibration:

Zero gas; N₂ or clean air

However, clean air cannot be used if CO_2 and O_2 are included in sample gas components.

Span gas; Concentration limited within 90 to 100% of

the range of each sample gas component. Unusable at concentrations beyond 100%.

Options

Gas extractor:

Used for aspirating sample gas.

Non-fixed type; Since this type is used for intermittent measurement, it cannot be fixed.

Material;

SUS304/polypropylene

Fixed type; Used for continuous measurement. Flange 5K25A FF Sampling pipe length selectable

among 300, 400, 600 and 800mm

Material; SUS316
• Sample inlet tube:

Used for delivering gas from the extractor to sampling

block

Shape; $\emptyset 6/\emptyset 4 \times 5 \text{ m or } \emptyset 6/\emptyset 4 \times 10 \text{ m}$

Material; Teflon

Installation Requirements

 Selection of a place which does not receive direct sunlight, rain, wind nor radiation from hot substances.

If such a place cannot be found, a roof or cover should be prepared for protection.

- Avoidance of a place under heavy vibration
- Selection of a place where atmospheric air is clean
- Discharge of exhaust gas into atmospheric air at a safe location
- · Avoidance of use in an explosion-proof area

Scope of Delivery

- Gas analyzer system (analyzing and sampling blocks)
- Standard accessories (Refer to the table at top right table.)
- Instruction manual

Items to be Prepared Separately

- Standard gas (ZBM) and pressure regulator (ZBD)
- Recorder (when necessary, Fuji's product type PHR)
- 1-year spares for sampling equipment (Refer to the table at bottom right table.)

Standard Accessories

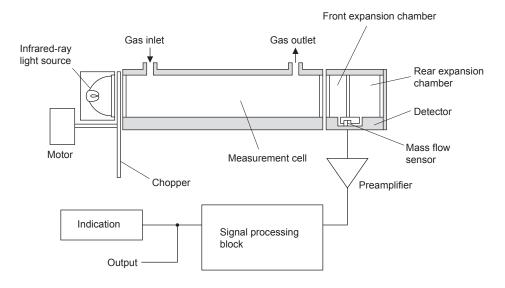
Name	Quantity
Tubular fuse (2A)(for analyzing block)	2 pcs
Tubular fuse (2A)(for sampling block)	2 pcs
Power cord (for domestic use, for 100/115V AC) (2m) × 2 Power cord (for North American use, for 100/115V AC) (2m) × 2 Power cord (for European use, for 200/220V AC) (2m) × 2	Either one pair * Depending on customer's code selection.
Grounding cable (5m)	2 cables
Control signal cable (1m)	1 cable
Output signal cable (1m)	1 cable
Filter paper (Teflon) for membrane filter (when provided with SO ₂ analyzer)	4 sheets
Filter paper (glass fiber) for membrane filter (when not provided with SO ₂ analyzer)	10 sheets
Filter element for zero gas	2 pcs
Water container for zero gas	1 pc
Connection tube (5m)	1 tube
Instruction manual (in Japanese or English)	1 copy

Note) Standard accessories include consumables for 6 months.

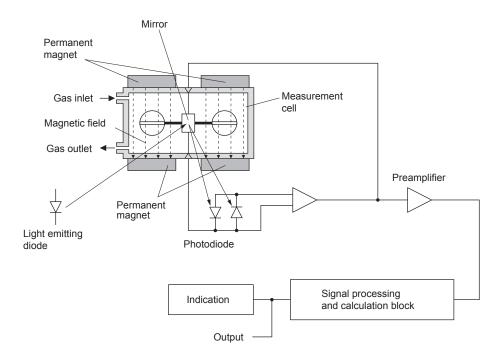
Spare Parts for 1-Year Measurement

Name	Quantity	Ordering No.
Filter paper (Teflon) for membrane filter (when provided with SO ₂ analyzer)	12 sheets	TK741833P3
Filter paper (glass fiber) for membrane filter (when not provided with SO ₂ analyzer)	1 pc (25 sheets)	TK700735P2
Large O-ring for membrane filter	2 pcs	8553765
Small O-ring for membrane filter	2 pcs	TK733572P1
Filter element for zero gas	3 pcs	TK708816P1
Mist filter element	1 pc	TK7H8043P1
O-ring for mist filter	1 pc	8553765
Diaphragm unit for pump	4 units	TK713248P1
NO2/NO converter catalyst (when provided with NOx analyzer)	2 packs	TK726891C1
Glass wool for NO ₂ /NO converter (when provided with NOx analyzer)	2 packs	TK726890C1
NO2/NO converter joint (when provided with NOx analyzer)	4 pcs	TK7G6890P1

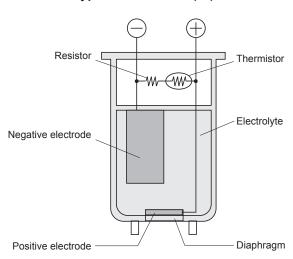
For placing an order for all the spare parts for 1-year measurement, you are requested to select the following code symbols.


1	2	3	4	5	6	7	8						
Ζ	В	Ν	1	S	٧		1	Description					
								NOx analyzer	SO ₂ analyzer				
						1		 Without	Without				
						2		 With	Without				
						3		 Without	With				
						4		 With	With				

Other


 A galvanic cell type oxygen sensor has a service life of about 18 months from the date of its delivery. Periodic replacement is recommended.

Replacement part ordering No.: TK7M3502C1


Principle Diagram of Infrared Type Measurement (NO, SO₂, CO₂, CO, CH₄)

Principle Diagram of Magnetic Force Type Measurement (O2)

Principle Diagram of Galvanic Cell Type Measurement (O2)

CODE SYMBOLS

Digit				<u>1 2 3 4 5 6 7 8</u> <u>9 1011 12 13</u> <u>14 15 16 17 18 19 20</u> ← Digit No.
Analyzing block + sampling block 1 set F 5			note	
5 ≤ Sample components (NOx, SOz, COz, CO, CH4) > 1 1-component analyzer SCO CO2 CH4 NOX 2-component analyzer (1st component + 2nd component) NOx+SOz CO2+CO2 CH4+CO2 NOX+(CO2 CH4+CO2 NOX+(CO2 CH4+CO2 NOX+(CO2 CH4+CO2 NOX+(CO2 CH4+CO2 NOX+(CO2 CO3	4			[
1-component analyzer Soz CO		Analyzing block + sampling block: 1 set	+	
SQ2 COC COC COC COC COC COC COC COC COC CO) °			
CO CO2 CC14 NOX 2-component analyzer (1st component + 2nd component) NOX+SO2 CO2+CO3 NOX+CO2 CO2+CO4 NOX+CO2 NOX+CO3 N		'		
2-component analyzer (1st component) 2-component 2-				
2-component analyzer (1st component) 2-component 2-				
2-component analyzer (1st component) 2-component 2-		CH4		E
NOx+SQ2				P :::::::::::::::
CO2+CO CH4+CO CO3+CH4 NOx+CO3 CO3-CH2 NOx+CO3 3-component analyzer (st component + 2nd component) NOx+SO2+(CO1) NOx+CO2+CO3 NOX+CO3+CO3 NOX+CO3+CO3 NOX+CO3+CO3+CO3 NOX+CO3+CO3+CO3+CO3+CO3+CO3+CO3+CO3+CO3+CO3				
CH+CO CO2+CH4 NOX+(CO) Scomponent analyzer (1st component + 2nd component) NOX+SO2+(CO2) NOX+SO2+(CO2) NOX+SO2+(CO2) NOX+(CO2+CO) SO2+(CO2+CO) NN NOX+SO2+(CO2+CO) NN NOX+SO2+(CO2+CO2+CO2+CO2+CO2+CO2+CO2+CO2+CO2+CO2+				
CO2+CH4 NOX+(CO) 3-component analyzer (1st component + 2nd component) NOX+800+(CO2) NOX+800+(CO2) NOX+800+(CO2) NOX+800+(CO2) NOX+800+(CO2) NOX+800+(CO2+CO) SO2+(CO2+CO) SO2+(CO2				
NOx+(CO) S-component analyzer (1st component + 2nd component) NOx+SO-(CO) NOx+SO-(CO) NOx+SO-(CO) NOx+SO-(CO) NOx+SO-(CO) NOx+(CO+CO) NOx+(CO+CO) NOx+(CO+CO) NOx+(CO+CO) NOx+(CO+CO) NOx+SO-(CO+CO) NO				
3-component analyzer (1st component + 2nd component) NO×+SO+(CO2) NO×+CO2+CO3 NO×+CO2+CO3 NO×+CO2+CO4 SO2+(CO2+CO4) CH4+(CO2+CO4) CH4+(CO2+CO4) CH4+(CO2+CO4) Viffi out Other 6			note 1	
NOx+SOx+(CO2) NOx+(CO2+CO) NOx+(CO2+CO) NOx+(CO2+CO) NOx+(CO2+CO) NOx+(CO2+CO) NOx+(CO2+CO) NOx+(CO2+CO) NOx+SOx+(CO2+CO) NOx+SOx+(CO2+CO2+CO) NOx+SOx+(CO2+CO2+CO) NOx+SOx+(CO2+CO2+CO) NOx+SOx+(CO2+CO2+CO2+CO2+CO2+CO2+CO2+CO2+CO2+CO2+			Thole i	
NOx+502+(CO2+CO) NOx+(CO2+CO) SO2+(CO2+CO) SO2+(CO2+CO2+CO2+CO2+CO2+CO2+CO2+CO2+CO2+CO2+				
NOx+(CO2+CO) SO2+(CO2+CO) CH4+(CO2+CO) CH4				I M i i i i i i i i i i i i i i i i i i
CH+r(CO2+CO) 4-component analyzer (is component-2nd component-3nd component-3nd component analyzer (is component-2nd component-3nd component) NOx+sO2+(CO2+CO) With out Other G < Sample component (O2) and measuring range > Galvanic cell type oxygen analyzer/0 to 5%/10%/25% Wight out With out With out S < Revision code > 9 < Power supply > For domestic user 100 to 115V AC, 50/60Hz For domestic user 100 to 115V AC, 50/60Hz For European use 200 to 240V AC, 50/60Hz For European use 200 to 240V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For Lorth American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz For North American user 100 to 115V AC, 50/60Hz Fo				
4-component analyzer (1st component-2nd component) NOx+SO2+(CO2+CO) With out NOx+SO2+(CO2+CO) With out NOx+SO2+(CO2+CO) NOx+SO2+(CO2+CO) NOx+SO2+(CO2+CO) NOx+SO2+(CO2+CO) NOx+SO2+(CO2+CO2+CO) NOx+SO2+(CO2+CO2+CO2+CO2+CO2+CO2+CO2+CO2+CO2+CO2+		SO ₂ +(CO ₂ +CO)		
NOx+SO2+(CO+CO) Note No				s
With out Other Ot				
Other Z		· /		
6 Sample component (Oz) and measuring range > Galvanic cell type oxygen analyzer/0 to 5%/10%/25% Wagnetic force type oxygen analyzer/0 to 5%/10%/25% With out with out selection of the component			note 2	
Galvanic cell type oxygen analyzer/0 to 5%/10%/25% 1	<u></u>		+	<u> </u>
Magnetic force type oxygen analyzer/0 to 5%/10%/25% 2 2	0			
With out				
8 < Revision code > 3 3 1 1 1 1 1 1 1 1				
9	8			3
For European use 200 to 240V AC, 50/60Hz For North American use 100 to 115V AC, 50/60Hz 10			note 3	
Measuring range (1st component) >				
Measuring range (1st component) >				[2]
0 to 200ppm/1000ppm/1000ppm 0 to 500ppm/1000ppm/2000ppm 0 to 1000ppm/2000ppm/5000ppm 0 to 2000ppm/5000ppm/19% 0 to 5000ppm/19%29% 0 to 19%/29%/59% 0 to 19%/29%/59% 0 to 19%/29%/50% 0 to 1000ppm/2000ppm 0 to 5000ppm/10% 0 to 5%/109%/20% 0 to 20%/50%/100% 0 to 200ppm/5000ppm/1000ppm 0 to 5000ppm/1000ppm/5000ppm 0 to 5000ppm/100%/20% 0 to 1000ppm/2000ppm/5000ppm 0 to 1000ppm/2000ppm/5000ppm 0 to 5000ppm/1000ppm/5000ppm 0 to 2000ppm/5000ppm/1000ppm 0 to 5000ppm/1000ppm/5000ppm 0 to 5000ppm/1000ppm/5000ppm 0 to 5000ppm/1000ppm/5000ppm 0 to 2000ppm/5000ppm/1000ppm 0 to 5000ppm/1000ppm 0 to 5000ppm/5000ppm/5000ppm 0 to 5000ppm/500ppm/5000ppm 0 to 5000ppm/500ppm/500ppm 0 to 5000ppm/500ppm/500ppm 0 to 5000ppm/500ppm/500ppm 0 to 5000ppm/500ppm/500ppm 0 to 5000ppm/500p			<u> </u>	3
0 to 500ppm/1000ppm/2000ppm 0 to 1000ppm/2000ppm 0 to 1000ppm/2000ppm/5000ppm 0 to 2000ppm/5000ppm/1% 0 to 5000ppm/1%/2% 0 to 1%/2%/5%/ 0 to 2%/5%/10% 0 to 10 19%/20%/50% 0 to 10 19%/20%/50% 0 to 10 19%/20%/50% 0 to 20%/50%/100% 211 < Measuring range (2nd component) > note 2 211 < Measuring range (2nd component) > note 4 0 to 500ppm/1000ppm/2000ppm 0 to 1000ppm/2000ppm/5000ppm 0 to 1000ppm/5000ppm/1% 0 to 5000ppm/1000ppm/5000ppm 0 to 1000ppm/5000ppm/5000ppm 0 to 1000ppm/5000ppm/5000ppm 0 to 5000ppm/1000ppm 0 to 500ppm/1000ppm 0 to 500ppm/1000ppm/5000ppm 0 to 500ppm/5000ppm/1% 0 to 500ppm/5000ppm/1% 0 to 500ppm/5000ppm/1% 0 to 500ppm/5000ppm/1% 0 to 500ppm/5000ppm/5000ppm 0 to 100ppm/5000ppm/5000ppm 0 to 100ppm/5000ppm/5000ppm 0 to 100ppm/5000ppm/5000ppm 0 to 500ppm/5000ppm/5000ppm 0 to 500ppm/500ppm/500ppm 0 to 500ppm/500ppm/	10		note 4	
0 to 1000ppm/2000ppm/5000ppm 0 to 2000ppm/5000ppm/1% 0 to 5000ppm/1%/2% 0 to 1%/2%/5% 0 to 2%/5%/10% 0 to 10 to 5%/10% 0 to 10 to 5%/10% 0 to 5%/10%/20% 0 to 10 to 20%/50%/100% With out 11				[A] : : : : : : : : :
0 to 2000ppm/15000ppm/11% 0 to 5000ppm/14%/2% 0 to 1%/2%/5% 0 to 2%/5%/10% 0 to 5000ppm/1000ppm 0 to 500ppm/1000ppm 0 to 5000ppm/1000ppm				
0 to 5000ppm/196/296 0 to 198/59/57096 0 to 298/59/1096 0 to 298/598/10096 0 to 298/598/10096 0 to 2098/598/10096 With out 11				
0 to 1%/2%/5%/0				
0 to 2%/5%/10% 0 to 5%/10%/20% 0 to 10%/20%/50% 0 to 20%/50%/100% With out 11 < Measuring range (2nd component) > note 4 0 to 200ppm/500ppm/1000ppm 0 to 1000ppm/2000ppm/5000ppm 0 to 1000ppm/2000ppm/5000ppm 0 to 500ppm/1000ppm/1% 0 to 500ppm/10%/2% 0 to 1%/2%/5% 0 to 2%/5%/10% 0 to 10%/20%/50% 0 to 1000ppm/2000ppm 0 to 1000ppm/2000ppm 0 to 500ppm/1000ppm 0 to 500ppm/1000ppm 0 to 10%/20%/50% 0 to 5%/10%/20% 0 to 10%/20%/50% 0 to 10%/20%/50% 0 to 20%/50%/100% 22 < Measuring range (3rd component) > note 4 0 to 200ppm/500ppm/1000ppm 0 to 1000ppm/2000ppm/2000ppm 0 to 1000ppm/2000ppm/2000ppm 0 to 1000ppm/2000ppm/2000ppm 0 to 500ppm/1000ppm/1000ppm 0 to 500ppm/1000ppm/1000ppm 0 to 500ppm/1000ppm/1000ppm 0 to 500ppm/1000ppm/5000ppm 0 to 5000ppm/1000ppm/5000ppm 0 to 5000ppm/5000ppm/1000ppm/5000ppm 0 to 5000ppm/1000ppm/5000ppm 0 to 5000ppm/5000ppm/1000ppm/5000ppm 0 to 5000ppm/5000ppm/5000ppm 0 to 5000ppm/5000ppm/5000ppm/500ppm/5000ppm/500ppm/5000ppm/500ppm/5000ppm/500ppm/				[F]
0 to 10%/20%/50%				l
0 to 20%/50%/100% With out 11		0 to 5%/10%/20%		H ; ; ; ; ; ; ; ; ;
With out		0 to 10%/20%/50%		
11				
0 to 200ppm/500ppm/1000ppm 0 to 500ppm/1000ppm/2000ppm 0 to 1000ppm/2000ppm/5000ppm 0 to 2000ppm/5000ppm/1% 0 to 5000ppm/1%/2% 0 to 5000ppm/1%/2% 0 to 1%/2%/5% 0 to 2%/5%/10% 0 to 10%/20%/50% 0 to 20%/50%/100% With out 12 < Measuring range (3rd component) >	4.			
0 to 500ppm/1000ppm/2000ppm 0 to 1000ppm/2000ppm/5000ppm 0 to 1000ppm/2000ppm/1% 0 to 5000ppm/1%/2% 0 to 2%/5%/10% 0 to 5%/10%/20% 0 to 10%/2%/5% 0 to 20%/50%/100% 0 to 20%/50%/100% 2	11		note 4	
0 to 1000ppm/2000ppm/5000ppm 0 to 2000ppm/5000ppm/1% 0 to 5000ppm/1%/2% 0 to 1%/2%/5% 0 to 2%/5%/10% 0 to 5%/10%/20% 0 to 10 0 20%/5%/10% 0 to 20%/50%/100% With out 12				[A]
0 to 2000ppm/5000ppm/1% 0 to 5000ppm/1%/2% 0 to 1%/2%/5% 0 to 2%/5%/10% 0 to 5%/10%/20% 0 to 5%/10%/20%/50% 0 to 20%/50%/100% With out 12				
0 to 5000ppm/1%/2% 0 to 1%/2%/5% 0 to 2%/5%/10% 0 to 5%/10%/20% 0 to 10%/20%/50% 0 to 20%/50%/100% With out 12				
0 to 1%/2%/5% 0 to 2%/5%/10% 0 to 5%/10%/20% 0 to 10%/20%/50% 0 to 100%/20%/50% 0 to 20%/50%/100% With out 12				
0 to 2%/5%/10% 0 to 5%/10%/20% 0 to 10%/20%/50% 0 to 20%/50%/100% With out 12				
0 to 10%/20%/50%				[g]
0 to 20%/50%/100% With out 12		0 to 5%/10%/20%		
With out				[J]
12				
0 to 200ppm/500ppm/1000ppm 0 to 500ppm/1000ppm/2000ppm 0 to 1000ppm/2000ppm/5000ppm 0 to 2000ppm/5000ppm/1% 0 to 5000ppm/1%020% 0 to 5000ppm/1%/2% E 0 to 1%/2%/5% 0 to 2%/5%/10% 0 to 5%/10%/20% 0 to 5%/10%/20% 0 to 10%/20%/50% Utility to 10%/20%/50%/50% Utility to 10%/20%/50% Utility to 10%/20%/50%/50% Utility to 10%/20%/50%/50%/50%/50%/50%/50%/50%/50%/50%/5	10			<u> </u>
0 to 500ppm/1000ppm/2000ppm 0 to 1000ppm/2000ppm/5000ppm 0 to 2000ppm/5000ppm/1% 0 to 5000ppm/1%/2% 0 to 1%/2%/5% 0 to 2%/5%/10% 0 to 5%/10%/20% 0 to 10%/20%/50% Uto 10%/20%/50%/100% Uto 10%/20%/50%/100% Uto 10%/20%/50%/100%	12		note 4	
0 to 1000ppm/2000ppm/5000ppm 0 to 2000ppm/5000ppm/1% 0 to 5000ppm/1%/2% 0 to 1%/2%/5% 0 to 2%/5%/10% 0 to 5%/10%/20% 0 to 10%/20%/50% 0 to 20%/50%/100%				
0 to 2000ppm/5000ppm/1% 0 to 5000ppm/1%/2% 0 to 1%/2%/5% 0 to 1%/2%/5% 0 to 2%/5%/10% 0 to 5%/10%/20% 0 to 10%/20%/50% 0 to 20%/50%/100%				
0 to 5000ppm/1%/2% 0 to 1%/2%/5% 0 to 2%/5%/10% 0 to 5%/10%/20% 0 to 5%/10%/20% 0 to 10%/20%/50% 0 to 20%/50%/100%				
0 to 1%/2%/5% 0 to 2%/5%/10% 0 to 5%/10%/20% 0 to 10%/20%/50% 0 to 20%/50%/100%				
0 to 2%/5%/10% 0 to 5%/10%/20% 0 to 10%/20%/50% 0 to 20%/50%/100%				
0 to 5%/10%/20% 0 to 10%/20%/50% 0 to 20%/50%/100%			1	
0 to 20%/50%/100%				
With out note 2 Y Y				
		With out	note 2	[Y] : : : : : :

			1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ← Digit No.
Digit	Description	note	ZSVF Y3 - Y of code
13	< Measuring range (4th component) >	note 4	
	0 to 200ppm/500ppm/1000ppm		A
	0 to 500ppm/1000ppm/2000ppm		B
	0 to 1000ppm/2000ppm/5000ppm		C
	0 to 2000ppm/5000ppm/1%		D
	0 to 5000ppm/1%/2%		E
	0 to 1%/2%/5%		F
	0 to 2%/5%/10%		G
	0 to 5%/10%/20%		H
	0 to 10%/20%/50%		J
	0 to 20%/50%/100%		K
	With out	note 2	Y
14	< Output >		
	0 to 1 V DC, non-isolated		[1]
	4 to 20 mA DC, non-isolated		2
15	< Output type >		
	Instantaneous value after O2 correction	note 5,7	[0] ; ; ; ;
	Average value after O ₂ correction	note 5,7	 1
	CP calculation value	note 10	[2]
	With out	note 6	Y
17	< Language >		
	Japanese		
40	English		2
18	< Gas extractor >		
	Non-fixed type (for intermittent measurement)		
	Fixed type (for continuous measurement), flange 5K25A, L = 300 mm		
	Fixed type (for continuous measurement), flange 5K25A, L = 400 mm		3
	Fixed type (for continuous measurement), flange 5K25A, L = 600 mm		4
	Fixed type (for continuous measurement), flange 5K25A, L = 800 mm		[5]
40	With out		IY :
19	< Sample inlet tube >	note 8	
	5m×ø6/ø4, Teflon		
	10m×ø6/ø4, Teflon		В
	20m×ø6/ø4, Teflon With out		C
20		t- 0	IY.
20	< Adjustment > Standard adjustment	note 9	
	Adjustment for heat treatment furnace	noto 11	A
	1 ,	note 11	В Z
	Other		2

- Note 1) A parenthesized sample component stands for the 2nd optical system.
- Note 2) Specify code Y when only O₂ analyzer is needed.
- Note 3) Between "1", "2" and "3" of the 9th digit, the rated voltage and plug shape of the attached power cord are different.
 - "1": For domestic use, rated voltage 125V AC (PSE), plug shape North American type
 - "2": For European use, rated voltage 250V AC (ECC), plug shape European type
 - "3": For North American use, rated voltage 125V AC (UL), plug shape North American type
- Note 4) For possible combinations of sample component and measuring range, refer to the following tables (on pages 8 and 9).
- Note 5) Specify this code when "1" or "2" is specified at the 6th digit.
- Note 6) When "Y" is specified at the 6th digit, specify "Y" or "2" at the 15th digit.
- Note 7) The kind of output after O2 correction will be added to all target components only when an analyzer for NOx, SO2 and CO is specified.
- Note 8) Sample inlet tube should be connected within 20 m.
- Note 9) Calibration curve varies with gas components contained in sample gas.
 - "A; standard adjustment" stands for adjustment in N2 balance.
 - "B ; adjustment for heat treatment furnace" is applied to CO analyzer and CO2 analyzer.
 - CO2 analyzer: CO2 range gas + 25% CO + 31% H2/N2
 - CO analyzer: CO range gas + 5% CO₂ + 31% H₂/N₂
 - When "Z; other" is specified, a gas composition table should be attached.
- Note 10) Can be manufactured only when " CO2 analyzer" is selected for the 5th digit.
 - When the 15th code is "2", the range code "A, B, C, D, E" is not available.
- Note 11) When the 20th code is "B", the range code "K" is not available.

Tables of Sample Component and Measuring Range - Availability Check Tables -

Table 1: 1-Component Analyzer (NOx, SO₂, CO₂, CO, CH₄)

	Sample component	NOx analyzer	SO ₂ analyzer	CO ₂ analyzer	CO analyzer	CH4 analyzer
Ra	ange	Р	А	D	В	E
Α	0 to 200/500/1000ppm	_	_	0	0	_
В	0 to 500/1000/2000ppm	0	0	0	0	_
С	0 to 1000/2000/5000ppm	0	0	0	0	0
D	0 to 2000/5000ppm/1%	_	0	0	0	0
Е	0 to 5000ppm/1/2%	_	_	0	0	0
F	0 to 1/2/5%	_	_	0	0	0
G	0 to 2/5/10%	_	_	0	0	0
Н	0 to 5/10/20%	-	-	0	0	0
J	0 to 10/20/50%	_	_	0	0	0
К	0 to 20/50/100%	_	-	0	0	0

O : Product available

Table 2: 2-Component Analyzer (NOx analyzer + SO₂ analyzer)

	SO ₂ analyzer range			Ran	ge values a	e as those o	those of NOx analyzer.				
NO	x analyzer range	Α	В	С	D	E	F	G	Н	J	К
Α	0 to 200/500/1000ppm	_	_	_	-	-	_	_	_	_	_
В	0 to 500/1000/2000ppm	_	0	0	0	-	_	_	_	_	_
С	0 to 1000/2000/5000ppm	_	0	0	0	-	-	-	-	_	-
D	0 to 2000/5000ppm/1%	_	-	-	-	-	-	-	-	_	-
Е	0 to 5000ppm/1/2%	_	-	-	-	-	-	-	-	_	-
F	0 to 1/2/5%	_	_	_	-	-	_	_	_	_	_
G	0 to 2/5/10%	_	_	_	-	-	_	_	_	_	_
Н	0 to 5/10/20%	_	_	_	_	-	_	_	_	_	_
J	0 to 10/20/50%	_	_	_	_	_	_	_	_	_	_
K	0 to 20/50/100%	_	_	_	_	_	_	_	_	_	_

O : Product available

Table 3: 2-Component Analyzer (CO₂ analyzer + CO analyzer)

	CO analyzer range	Range values are the same as those of CO ₂ analyzer.									
СО	2 analyzer range	Α	В	С	D	Е	F	G	Н	J	К
Α	0 to 200/500/1000ppm	0	0	_	_	-	-	-	_	-	-
В	0 to 500/1000/2000ppm	0	0	0	_	_	_	_	_	_	-
С	0 to 1000/2000/5000ppm	_	_	0	0	_	_	_	_	_	-
D	0 to 2000/5000ppm/1%	_	0	0	0	0	_	_	_	_	-
Е	0 to 5000ppm/1/2%	_	0	0	0	0	0	0	0	-	_
F	0 to 1/2/5%	0	0	0	0	0	0	0	0	0	_
G	0 to 2/5/10%	0	0	0	0	0	0	0	0	0	0
Н	0 to 5/10/20%	0	0	0	0	0	0	0	0	0	0
J	0 to 10/20/50%	_	0	0	0	0	0	0	0	0	0
K	0 to 20/50/100%	-	0	0	0	0	0	0	0	0	0

O : Product available

Table 4: 2-Component Analyzer (CH₄ analyzer + CO analyzer)

	CO analyzer range	Range values are the same as those of CH ₄ analyzer.									
CH	analyzer range	Α	В	С	D	Е	F	G	Н	J	К
Α	0 to 200/500/1000ppm	_	_	_	-	-	-	_	_	-	_
В	0 to 500/1000/2000ppm	_	_	_	-	-	-	_	_	-	_
С	0 to 1000/2000/5000ppm	_	_	_	-	-	_	_	_	-	_
D	0 to 2000/5000ppm/1%	_	_	_	-	_	_	_	_	-	_
Е	0 to 5000ppm/1/2%	_	_	0	0	0	0	_	_	-	_
F	0 to 1/2/5%	_	_	0	0	0	0	0	0	_	_
G	0 to 2/5/10%	_	0	0	0	0	0	0	0	0	0
Н	0 to 5/10/20%	_	0	0	0	0	0	0	0	0	0
J	0 to 10/20/50%	_	0	0	0	0	0	0	0	0	0
K	0 to 20/50/100%	_	0	0	0	0	0	0	0	0	0

O: Product available

Table 5: 2-Component Analyzer (CO₂ analyzer + CH₄ analyzer)

	CH4 analyzer range	Range values are the same as those of CO2 analyzer.									
CO	analyzer range	Α	В	С	D	E	F	G	Н	J	К
Α	0~200/500/1000ppm	-	_	_	_	_	_	_	_	_	-
В	0~500/1000/2000ppm	_	_	_	_	_	_	_	_	_	-
С	0~1000/2000/5000ppm	_	_	_	_	0	_	_	_	_	-
D	0~2000/5000ppm/1%	_	_	_	0	0	0	_	_	_	-
Е	0~5000ppm/1/2%	_	_	_	0	0	0	0	_	_	-
F	0~1/2/5%	_	_	_	0	0	0	0	0	_	-
G	0~2/5/10%	_	_	_	0	0	0	0	0	0	-
Н	0~5/10/20%	_	_	_	0	0	0	0	0	0	0
J	0~10/20/50%	_	_	_	0	0	0	0	0	0	0
К	0~20/50/100%	-	_	-	0	0	0	0	0	0	0

O : Product available

• 2-component analyzer (NOx analyzer + CO analyzer);

Possible range in combination of Table 1 (NOx analyzer) and Table 1 (CO analyzer)

• 3-component analyzer (NOx analyzer + SO₂ analyzer + CO analyzer);

Possible range in combination of Table 2 (NOx analyzer + SO₂ analyzer) and Table 1 (CO analyzer)

• 3-component analyzer (NOx analyzer + SO₂ analyzer + CO₂ analyzer);

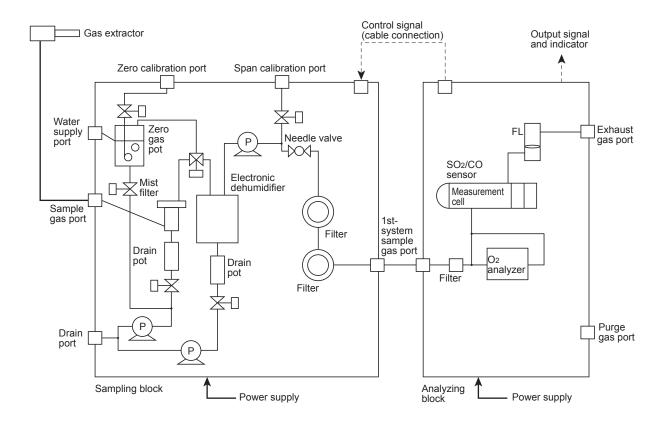
Possible range in combination of Table 2 (NOx analyzer + SO₂ analyzer) and Table 1 (CO₂ analyzer)

• 3-component analyzer (NOx analyzer + CO₂ analyzer + CO analyzer);

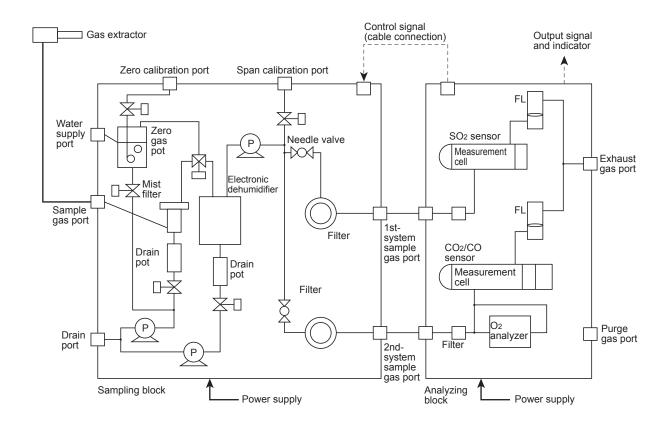
Possible range in combination of Table 1 (NOx analyzer) and Table 3 (CO2 analyzer + CO analyzer)

 $\bullet \ 3\text{-component analyzer (SO$_2$ analyzer + CO$_2$ analyzer + CO$ analyzer)};$

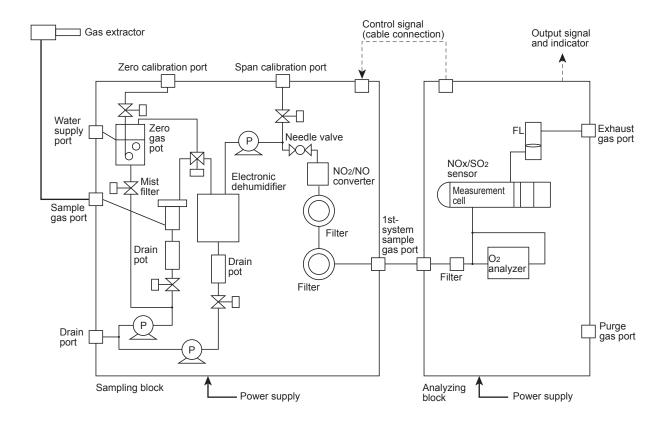
Possible range in combination of Table 1 (SO₂ analyzer) and Table 3 (CO₂ analyzer + CO analyzer)

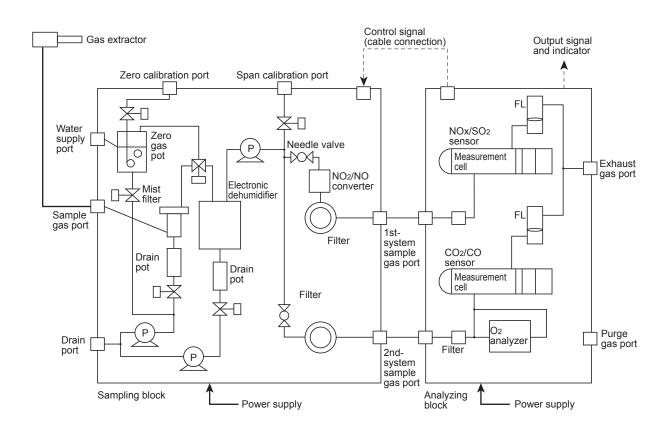

• 3-component analyzer (CH₄ analyzer + CO₂ analyzer + CO analyzer);

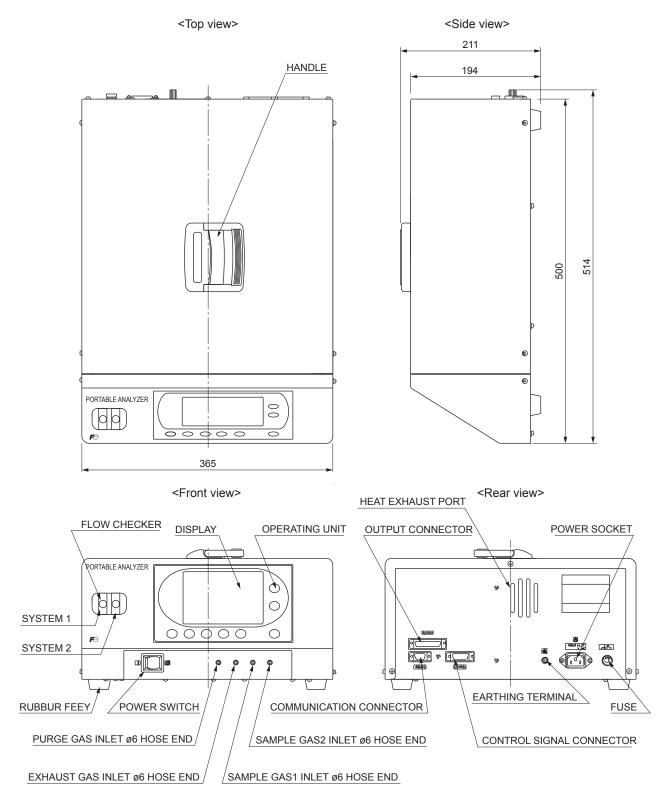
Possible range in combination of Table 1 (CH₄ analyzer) and Table 3 (CO₂ analyzer + CO analyzer)


• 4-component analyzer (NOx analyzer + SO₂ analyzer + CO₂ analyzer + CO analyzer);

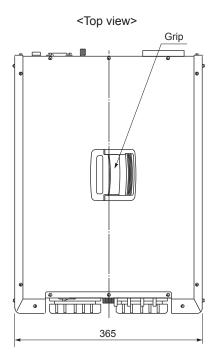
Possible range in combination of Table 2 (NOx analyzer + SO₂ analyzer) and Table 3 (CO₂ analyzer + CO analyzer)

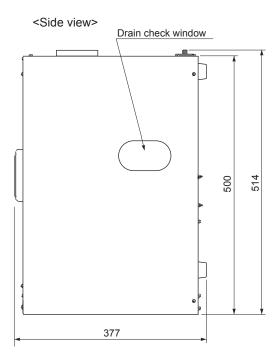

With 1 optical System (1 to 3 component gas sampling system except for NOx analyzer)

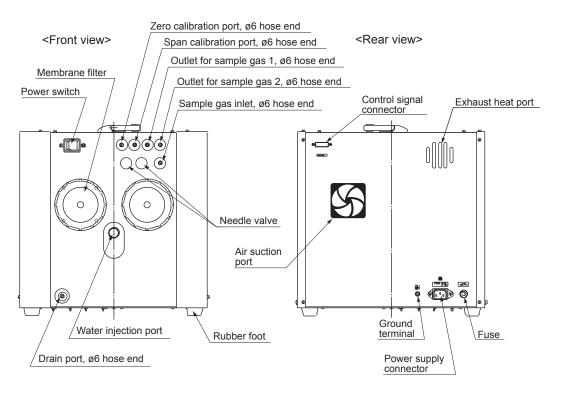

With 2 optical systems (3 to 4 component gas sampling system except for NOx analyzer)


With 1 optical system (1 to 3 component gas sampling system including NOx analyzer)

With 2 optical systems (3 to 5 component gas sampling system including NOx analyzer)



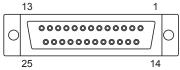

(1) Analyzing block



Weight Approx. 12kg

(2) Sampling block

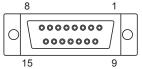
Weight Approx. 18kg


(3) External connection diagrams

Caution) Between male (P) and female (S) connectors, pin numbers are different.

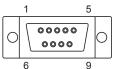
Connect them properly with utmost care.

<Analyzing block Analog output>


On the analyzer side, a female connector (DB-25S-T-NR made by Japan Aviation Electronics Industry) is attached. For connection, the furnished cables (1 m)(DB-25P) should be used.

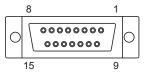
Color of furnished cable	Orange	Red	Brown	Black	White	Gray	Purple	Blue	Green	Yellow	Orang	Red	Brown
Pin name	CH7+	-C	-CH6+		-CH5+		-CH4+		-CH3+		-CH2+		CH1+
Pin No.	13	12	11	10	9	8	7	6	5	4	3	2	1
Pin No.	2	25 2	4 2	23 2	2 2	1 2	20 1	9 1	8 1	7 1	6	15	14
Pin name		NC -CH8+ -								-	CH7		
Color of furnished cable										В	lue G	een Y	ellow

<Analyzing block Control output>


On the analyzer side, a female connector (DA-15S-T-NR made by Japan Aviation Electronics Industry) is attached. For connection, the furnished cables (1 m)(DAU-15P) should be used.

Pin name	SOLENOID VALVE2											SAMPLE				
Pin No.	8	3 7		7	6		5	5	4		3	3	2		1	
Pin No.		15 1		4 13		3	1		2 11		10		ć			
Pin name		N	С		SOLENOID VALVE5			SOLENOID VALVE4				SOLENOID VALVE3				

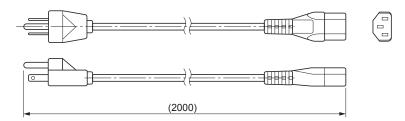
<Analyzing block Communication output>


On the analyzer side, a male connector (DE-9P-T-NR made by Japan Aviation Electronics Industry) is attached. For connection, commercially available cross cables (DE-9S) should be used.

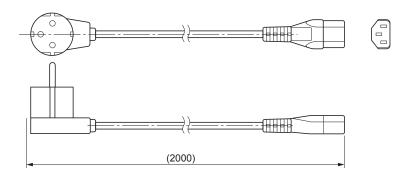
						_				
Pin name	NC		R)	(D	Tλ	(D	NC		GN	۱D
Pin No.		1	2		3		4		Ę	5
Pin No.	No.		6	7	7	8	3	9)	
Pin name		NC		N	C N		С	N	С	

<Sampling blockControl input>

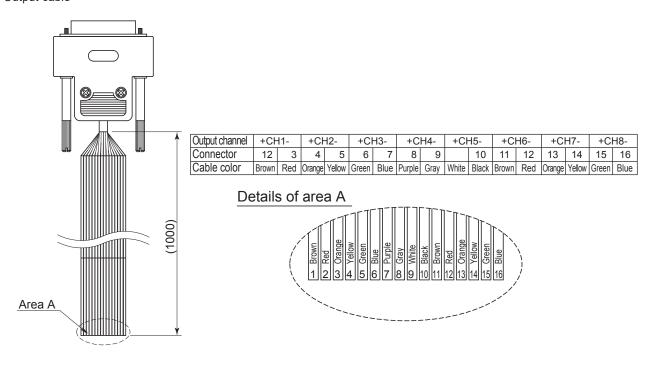
On the analyzer side, a female connector (DA-15S-T-NR made by Japan Aviation Electronics Industry) is attached. For connection, the furnished cables (1 m)(DAU-15P) should be used.

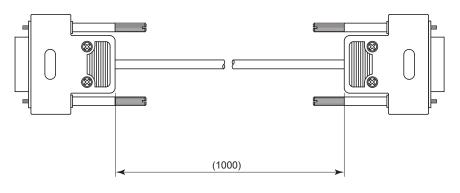


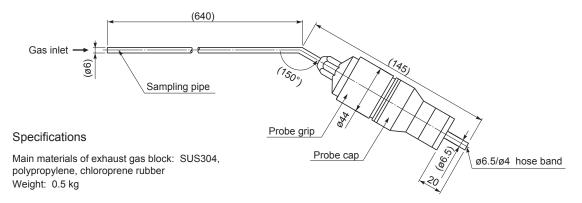
Pin name	SOLENOID VALVE2								DRAIN PUMP				SAMPLE PUMP			
Pin No.	8	3	7		6	6 5		5	4		3	3	2		1	
Pin No.		1	15 1		4 13		3	1	2 11		10		9			
Pin name		N	IC		SOLENOID VALVE5				SOLENOID VALVE4				SOLENOID VALVE3			


(4) Power cord and signal cable

• Power cord for domestic and North American use (North American type), rated voltage 125V AC.

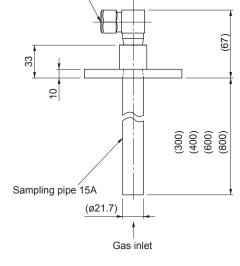

Note: The standards for domestic and North American use are different, but the shape is the same.

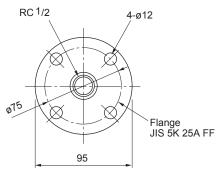

• Power cord for European use (European type), rated voltage 250 V AC


Output cable

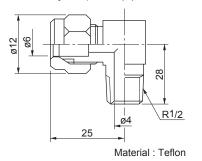
· Control input/output cable




(5)Non-fixed type gas extractor



Attached joint


(6) Fixed type gas extractor

Attached joint (for ø6 pipe connection)

Specifications

Main materials of gas-contacting parts: SUS316, Teflon Weight: 1 kg

Information in this catalog is subject to change without notice. Read the instruction manuals thoroughly before using the products.

F Fuji Electric Co., Ltd.

Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan

Phone: +81-3-5435-7111 www.fujielectric.com

www.fujielectric.com/products/sensors_measurements/instruments/index.html

